

PRØFIRE

PF2200-FD OPERATOR GUIDE DOC-001095_REV 3.0 © 2021 PROFIRE ENERGY INC. PROFIREENERGY.COM

PF2200 - **FD**

OPERATOR GUIDE

TABLE OF CONTENTS

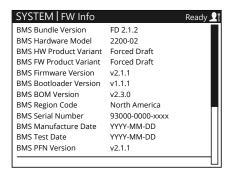
INTRODUCTION	02
PF2200-FD BMS Controller	02
APPROVALS AND RATINGS	03
CONTROLLER INTERFACE	04
TEMPERATURE SETTINGS	06
INPUT SETTINGS	07
PROCESS CONTROL SETTINGS	07
SETTINGS MODIFICATION	08
Drop down menu settings	08
Numeric settings	09
SYSTEM TOOLS	10
The Event Log screen	10
The Data Logging tool	10
The Status Priority tool	11
The PF2200-FD Diagnostic menus	11
OPERATING SEQUENCE	12
State table	12
State diagram	13
TDOUBLESHOOTING	1.4

INTRODUCTION

PF2200-FD BMS CONTROLLER

The PF2200-FD Burner Management System is an automated safety controller designed to monitor and control industrial heating processes that utilize single burner forced draft appliances. It provides for safe burner ignition, ionization or UV flame detection, temperature control, position proving and peripheral input device monitoring. The user interface provides real-time system status and state information as well as detailed alert annunciation, advanced diagnostics and data logging. The system has been optimized for power consumption to be

utilized in a variety of applications and can be monitored remotely.


This document provides a brief overview of the interface, operating sequence and functionality of the PF2200-FD BMS controller. Refer to the PF2200-FD Product Manual at profireenergy.com for detailed descriptions of the inputs, outputs and operating sequence as well as installation, maintenance and commissioning instructions. This document is applicable for the following hardware and firmware versions:

APPLICABLE HARDWARE AND FIRMWARE VERSIONS

This document is applicable for the following hardware and firmware versions:

PF2200-FD Firmware Version: FD 2.1.2 BMS Card Hardware Version V2.3

UI Card Hardware Version V3.2

Refer to the controller's Information Screen (System > Firmware > Info) to find the hardware and firmware versions of your system.

APPROVALS AND RATINGS

THE PF2200-FD IS CERTIFIED TO THE FOLLOWING STANDARDS

SIL 2 Capable

IEC 61508: 2010 Parts 1-7

Approved for use in a 1001 deployment

configuration

Electrical Burner Control System

UL 60730-2-5/ ANSI Z21.20-2014 • CSA C22.2 No. 60730-2-5

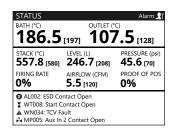
Class I Div 2 Group A, B, C & D, T4A (Class I, Zone 2, Group IIC – US Only)
UL 121201 • CSA-C22.2 No. 213

Type 4X

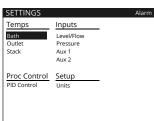
CSA C22.2 No. 94.1:15 • CSA C22.2 No. 94.2:15, Ed. 2 UL 50:15, Ed. 13 • UL 50E:15, Ed. 2

IP66

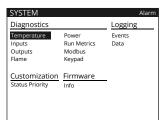
CSA-C22.2 No. 60529:16


CONTROLLER INTERFACE

THE PF2200-FD CONTROLLER CONSISTS OF 3 MAIN SCREENS:


 STATUS SCREEN – Always-on display that shows real-time input device readings, controller state and alerts.

ALERT TYPES DISPLAYED IN THE ALERTS PANE OF THE STATUS SCREEN:


- Alarm Prevents the system from entering any running state.
- Wait Prevents the system from entering any fuel state.
- Main Permissive Prevents the system from entering any main fuel state.
- Warning Displayed on screen only does not affect system state.
- SETTINGS SCREEN Screen containing all the configuration settings required to set up the system
- SYSTEM SCREEN Screen containing tools for data logging and settings backup as well as a suite of diagnostic information for troubleshooting

BUTTONS	FUNCTIONS
START	Start the system from the Ready state OR Reignite when one pilot is lost while running
STOP	Stop the system*
\Box	Return to previous screen from an on-screen menu
וםנ	Cycle through Status, Settings, and System screens
?	Display keypad functionality help screen
1	Switch to Commissioner Mode to see all available settings OR Switch to Operator Mode to see only essential settings and setpoints
	Navigate Menus and highlight items
ок	Select highlighted item OR Open settings adjustment dialog when highlighting numeric settings
	Change Status screen display mode
- +	Make incremental changes to numeric settings OR Scroll Event Log by full page

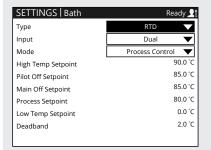
 $[\]star$ If user shut-down is a required safety function, the ESD input or External Ignition Switch must be used instead of the Stop button.

TEMPERATURE SETTINGS

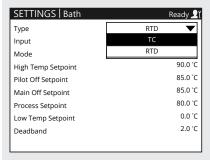
NAME	DEFAULT	OPTIONS/RANGE	DESCRIPTION	
LUCII TEMP CETPOINT	90 °C	0 °C - 1350 °C	Temperature threshold at which the	
HIGH TEMP SETPOINT	194 °F	32 °F - 2462 °F	system shuts down.	
High Temp Setpoint must	t be greater th	nan Pilot Off Setpoint		
If Type setting is set to RT	D, High Temp	Setpoint must be less t	than 850 °C (1562 °F)	
PILOT OFF SETPOINT	85 °C	0 °C - 1350 °C	Temperature threshold at which the	
FILUT OFF SETFORM	185 °F	32 °F - 2462 °F	system turns off the pilot valve(s).	
Pilot Off Setpoint must be	e greater than	Main Off Setpoint and	less than High Temp Setpoint	
MAIN OFF SETPOINT	85 °C	0 °C - 1350 °C	Temperature threshold at which the	
MAIN OFF SETFORM	185 °F	32 °F - 2462 °F	system turns off the main valve(s).	
Main Off Setpoint must be greater than Process Setpoint and less than Pilot Off Setpoint				
PROCESS SETPOINT	80 °C	0 °C - 1350 °C	Temperature that the system attempts to	
THOCESS SETT OHN	176 °F	32 °F - 2462 °F	maintain when in Process Control mode.	
Process Setpoint must be	greater than	Low Temp Setpoint and	d less than Main Off Setpoint	
LOW TEMP CETPOINT	0 ℃	0 °C - 1350 °C	Temperature threshold at which, if not	
LOW TEMP SETPOINT	32 °F	32 °F - 2462 °F	exceeded, the system warns the user.	
Low Temp Setpoint must be less than Process Setpoint				
DEADBAND	2 °C	0 °C - 100 °C	The deadband prevents bouncing between states when the input reading is	
DEADRAIND	3.6 °F	0 °F - 180 °F	close to the corresponding setpoint.	

INPUT SETTINGS

NAME	DEFAULT	OPTIONS/RANGE	DESCRIPTION	
4-20 LOW TRIP SET- POINT	12 mA	4 mA - 20 mA	Input threshold at which the system will initiate a low-trip event in accordance with the 4-20 Low Trip Mode setting.	
Type must be set to 4-20				
4-20 HIGH TRIP SETPOINT	19.6 mA	4 mA - 20 mA	Input threshold at which the system will initiate a high-trip event in accordance with the 4-20 High Trip Mode setting.	
Type must bet set to 4-20				
4-20 DEADBAND	0.2 mA	0 mA - 1 mA	The deadband prevents bouncing between states when the input reading is close to the corresponding trip point.	
To clear a low trip, input must be greater than 4-20 Low Trip plus deadband. To clear a high trip, input must be less than 4-20 High Trip minus deadband.				

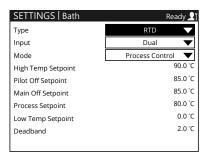

PROCESS CONTROL SETTINGS

NAME	DEFAULT	OPTIONS/RANGE	DESCRIPTION
RAMP TIME	10 sec	0 sec - 255 sec	Once the system enters process control mode after light off delay it will slowly ramp to the requested firing rate over this time.


SETTINGS MODIFICATION

DROP DOWN MENU SETTINGS

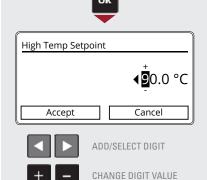
ACCEPTED CHANGE METHOD



OK

ACCEPT

QUICK SETTING ADJUSTMENT METHOD


*Note: Settings modifications made using the Quick Settings Adjustment Method take effect immediately.

SETTINGS MODIFICATION

NUMERIC SETTINGS

ACCEPTED CHANGE METHOD

SETTINGS Bath	Ready
High Temp Setpoint	90.0 °C
Pilot Off Setpoint	85.0 °C
Main Off Setpoint	85.0 °C
Process Setpoint	80.0 °C
Low Temp Setpoint	0.0 ℃
Deadband	2.0 ℃

Accept

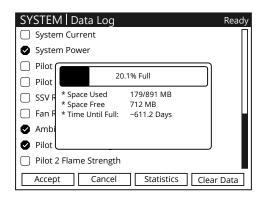
90.0 °C

Cancel

QUICK SETTING ADJUSTMENT METHOD

SETTINGS Bath	Ready
High Temp Setpoint	90.0 °C
Pilot Off Setpoint	85.0 °C
Main Off Setpoint	85.0 °C
Process Setpoint	80.0 °C
Low Temp Setpoint	0.0 °C
Deadband	2.0 °C

*Note: Settings modifications made using the Quick Settings Adjustment Method take effect immediately.

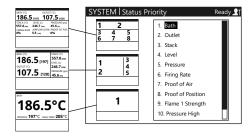

SYSTEM TOOLS

SYSTE	EM Eve	nt Log Press OK For	Options/Export
Date	Time	Description	Page: 1/22
Sep 30	4:12:46	Shutdown: ESD Contact C	pen 🗐
Sep 30	4:12:46	Alarm 2: ESD Contact Ope	en
Sep 13	15:06:35	Entered State: PID Contro	ı [[[
Sep 13	15:01:35	Entered State: Main Delay	<i>,</i> []]
Sep 13	15:01:31	Entered State: Main Detec	ct
Sep 13	15:01:27	Entered State: Main Light	Off
Sep 13	15:00:57	Entered State: Req Light 0	Off
Sep 13	15:00:57	Entered State: Pilot	
Sep 13	15:00:50	Entered State: Ignition	
Sep 13	15:00:20	Entered State: Req Pilot P	os
Sep 13	14:55:20	Entered State: Pre Purge	Ш

THE EVENT LOG SCREEN

(SYSTEM > LOGGING > EVENTS)

Displays a full history of system events for reference and troubleshooting. Events are continuously recorded to the USB storage device when inserted.

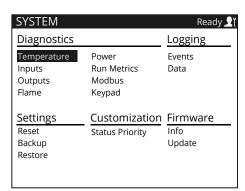


THE DATA LOGGING TOOL

(SYSTEM > LOGGING > DATA)

Logs input/output readings for up to 8 user selectable pieces of system information to the USB storage device. The data is logged in 15 second intervals and saved to the USB storage device regularly.

SYSTEM TOOLS CONT.


THE STATUS PRIORITY TOOL

(SYSTEM > CUSTOMIZATION >

STATUS PRIORITY)

Allows configuration of the items displayed on the main Status screen.

Use and to select a status element and to move it up or down the priority list.

THE PF2200-FD DIAGNOSTIC MENUS

(SYSTEM > DIAGNOSTICS)

Contain useful real-time system input and output measurements, run metrics and useful troubleshooting information.

OPERATING SEQUENCE

The PF2200-FD utilizes a state-based control scheme to safely monitor and control a burner. Each system state has specific entry and exit requirements and defined output behavior.

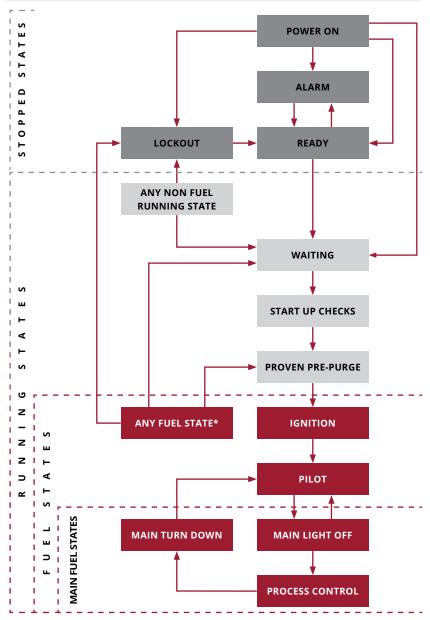
NOTE: The current system state is always displayed in the Status Bar located at the top of the User Interface screen.

STATE TABLE

STATE NAME	COIL OUTPUTS	PILOT OUTPUTS	SSV OUTPUTS	FAN OUTPUT	STATUS LED BEHAVIOR
Power On	De-energized	De-energized	De-energized	De-energized	Green-Amber- Red
Alarm	De-energized	De-energized	De-energized	De-energized ³	Slow flashing Red
Ready	De-energized	De-energized	De-energized	De-energized ³	Solid Red
Lockout	De-energized	De-energized	De-energized	De-energized ³	Fast Flashing Red
Waiting	De-energized	De-energized	De-energized	De-energized ³	Slow Flashing Green ⁶
Startup Checks	De-energized	De-energized	De-energized	De-energized	Solid Green ⁶
Proven Pre-Purge	De-energized	De-energized	De-energized	Energized ⁴	Solid Green ⁶
Ignition	Energized	Energized	De-energized	Energized ⁵	Solid Green ⁶
Pilot	De-energized ¹	Energized	De-energized	Energized ⁵	Solid Green ⁶
Main Light Off	De-energized ¹	Energized ²	Energized	Energized ⁵	Solid Green ⁶
Process Control	De-energized ¹	Energized ²	Energized	Energized ⁵	Solid Green ⁶
Main Turndown	De-energized ¹	Energized ²	Energized	Energized ⁵	Solid Green ⁶

¹ Coil outputs can be energized in this state upon flame loss when Reignition setting is Enabled

² Pilot outputs are de-energized in this state when Pilot Off Mode is set to Interrupted


³ Fan output is energized when system is post-purging

⁴ Fan output is de-energized when Fan Mode is set to Purge Only and system is in Request Pilot Position stage of the Proven Pre-Purge state.

⁵ Fan output is de-energized when Fan Mode is set to Purge Only

⁶ Amber LED shows instead of Green when a warning is present in the Alerts Pane on the Status Screen

STATE DIAGRAM

^{*} The system cannot transition from the Process Control state to the Waiting state without going through the Main Turndown state first.

TROUBLESHOOTING

PROBLEM	PROPOSED SOLUTIONS		
System has visible	Ensure pilot assembly, flame rod, and the gap between are fully engulfed in flame. If not, adjust rod position		
	2. Ensure flame detection wiring does not exceed the recommended maximum length		
flame but cannot detect	Ensure burner assembly has a low impedance path to lon-terminal of BMS		
	For longer run lengths, ensure ignition cable is used to avoid ground-loading		
Condition	Ensure the Status LEDs for both cards are functioning. If status LED is not functioning, cycle power (if safe to do so) and check again.		
Card is unresponsive or BMS card will not communicate with	Check the wiring between the BMS card and the User Interface Card.		
Oser interface card	Ensure that the firmware versions of the BMS card and UI card are matching.		
Ignition transformer	Ensure all wires in the ignition path are properly terminated and that there is a 1. low impedance path from the primary-windings to the BMS card as well as the secondary-windings to the ignition rod.		
spark	2. Ensure the gap between the ignition rod and the burner housing is between 2. 2mm and 8mm		
Solenoids are not turning on, or turning on then over time turn off	Ensure the solenoid is wired correctly and to the appropriate terminals. To ensure proper solenoid wiring, a multi-meter in OHM mode can be used to measure the resistance between the + and – terminal of the associated output. 1. Note: this measurement should be done with the BMS card powered off. If properly wired, the multi-meter should read a resistance of the solenoid coil plus the run length (i.e. if the multimeter reads open, there is likely a problem with wiring).		
	Ensure the PWM setting is correct for the appropriate solenoid. If using a peak- and-hold solenoid, the appropriate PWM setting can be found in the solenoid data sheet. Typically add a margin of 5-10% to allow for temperature variance. If using a non-peak-and-hold solenoid, ensure the PWM setting is set to 100%.		
Digital input will not energize	Ensure the input is properly wired. In the case of a dry contact, ensure the PWR terminal is connected and is sourcing the correct voltage.		
	Ensure adequate amount of wetting current is being applied to the contact. Run a current meter in series with the digital input switch to verify the current applied. If the wetting current is not adequate, the digital input either has too high of an impedance or the wiring has been compromised.		

QUESTIONS?

If you have any concerns or questions about the PF2200-FD, please contact us or visit us online at profireenergy.com.

UNITED STATES

1.801.796.5127

321 South, 1250 West Suite 1 Lindon, UT 84042, USA

support@profireenergy.com

CANADA

1.780.960.5278

9671 - 283 Street

Acheson, Alberta T7X 6J5, Canada

support@profireenergy.com

UNITED STATES

1.801.796.5127

321 South, 1250 West Suite 1 Lindon, UT 84042, USA

support@profireenergy.com

CANADA

1.780.960.5278

9671 - 283 Street

Acheson, AB T7X 6J5, CAN

support@profireenergy.com